Higher-order Sugawara operators for affine Lie algebras

Authors:
Roe Goodman and Nolan R. Wallach

Journal:
Trans. Amer. Math. Soc. **315** (1989), 1-55

MSC:
Primary 17B67; Secondary 15A72, 20G45

DOI:
https://doi.org/10.1090/S0002-9947-1989-0958893-5

MathSciNet review:
958893

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\hat {\mathfrak {g}}$ be the affine Lie algebra associated to a simple Lie algebra $\mathfrak {g}$. Representations of $\hat {\mathfrak {g}}$ are described by current fields $X(\zeta )$ on the circle ${\mathbf {T}}\;(X \in \mathfrak {g}$ and $\zeta \in {\mathbf {T}})$. In this paper a linear map $\sigma$ from the symmetric algebra $S(\mathfrak {g})$ to (formal) operator fields on a suitable category of $\hat {\mathfrak {g}}$ modules is constructed. The operator fields corresponding to $\mathfrak {g}$-invariant elements of $S(\mathfrak {g})$ are called Sugawara fields. It is proved that they satisfy commutation relations of the form $(\ast )$ \[ [\sigma (u)(\zeta ),X(\eta )] = {c_\infty }D\delta (\zeta /\eta )\sigma ({\nabla _X}u)(\zeta ) + {\text {higher-order}}\;{\text {terms}}\] with the current fields, where ${c_\infty }$ is a renormalization of the central element in $\hat {\mathfrak {g}}$ and $D\delta$ is the derivative of the Dirac delta function. The higher-order terms in $(\ast )$ are studied using results from invariant theory and finite-dimensional representation theory of $\mathfrak {g}$. For suitably normalized invariants $u$ of degree $4$ or less, these terms are shown to be zero. This vanishing is also proved for $\mathfrak {g} = {\text {sl}}(n,{\mathbf {C}})$ and $u$ running over a particular choice of generators for the symmetric invariants. The Sugawara fields defined by such invariants commute with the current fields whenever ${c_\infty }$ is represented by zero. This property is used to obtain the commuting ring, composition series, and character formulas for a class of highest-weight modules for $\hat {\mathfrak {g}}$.

- Vyjayanthi Chari and S. Ilangovan,
*On the Harish-Chandra homomorphism for infinite-dimensional Lie algebras*, J. Algebra**90**(1984), no. 2, 476–490. MR**760024**, DOI https://doi.org/10.1016/0021-8693%2884%2990185-6
S. Coleman, D. Gross, and R. Jackiw, - I. B. Frenkel,
*Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory*, J. Functional Analysis**44**(1981), no. 3, 259–327. MR**643037**, DOI https://doi.org/10.1016/0022-1236%2881%2990012-4 - Peter Goddard and David Olive,
*Kac-Moody and Virasoro algebras in relation to quantum physics*, Internat. J. Modern Phys. A**1**(1986), no. 2, 303–414. MR**864165**, DOI https://doi.org/10.1142/S0217751X86000149 - Roe W. Goodman,
*Nilpotent Lie groups: structure and applications to analysis*, Lecture Notes in Mathematics, Vol. 562, Springer-Verlag, Berlin-New York, 1976. MR**0442149** - Roe Goodman and Nolan R. Wallach,
*Whittaker vectors and conical vectors*, J. Functional Analysis**39**(1980), no. 2, 199–279. MR**597811**, DOI https://doi.org/10.1016/0022-1236%2880%2990013-0 - Roe Goodman and Nolan R. Wallach,
*Classical and quantum-mechanical systems of Toda lattice type. I*, Comm. Math. Phys.**83**(1982), no. 3, 355–386. MR**649809** - Roe Goodman and Nolan R. Wallach,
*Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle*, J. Reine Angew. Math.**347**(1984), 69–133. MR**733047**, DOI https://doi.org/10.1515/crll.1984.347.69 - Roe Goodman and Nolan R. Wallach,
*Classical and quantum mechanical systems of Toda-lattice type. III. Joint eigenfunctions of the quantized systems*, Comm. Math. Phys.**105**(1986), no. 3, 473–509. MR**848652** - Harish-Chandra,
*Differential operators on a semisimple Lie algebra*, Amer. J. Math.**79**(1957), 87–120. MR**84104**, DOI https://doi.org/10.2307/2372387 - Victor G. Kac,
*Laplace operators of infinite-dimensional Lie algebras and theta functions*, Proc. Nat. Acad. Sci. U.S.A.**81**(1984), no. 2, , Phys. Sci., 645–647. MR**735060**, DOI https://doi.org/10.1073/pnas.81.2.645 - Bertram Kostant,
*On Whittaker vectors and representation theory*, Invent. Math.**48**(1978), no. 2, 101–184. MR**507800**, DOI https://doi.org/10.1007/BF01390249 - V. G. Kac and D. A. Kazhdan,
*Structure of representations with highest weight of infinite-dimensional Lie algebras*, Adv. in Math.**34**(1979), no. 1, 97–108. MR**547842**, DOI https://doi.org/10.1016/0001-8708%2879%2990066-5 - James Lepowsky and Robert Lee Wilson,
*The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities*, Invent. Math.**77**(1984), no. 2, 199–290. MR**752821**, DOI https://doi.org/10.1007/BF01388447 - Francis D. Murnaghan,
*The theory of group representations*, Dover Publications, Inc., New York, 1963. MR**0175982** - Andrew Pressley and Graeme Segal,
*Loop groups*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR**900587**
H. Sugawara, - Nolan R. Wallach,
*A class of nonstandard modules for affine Lie algebras*, Math. Z.**196**(1987), no. 3, 303–313. MR**913657**, DOI https://doi.org/10.1007/BF01200353 - Hermann Weyl,
*The classical groups*, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR**1488158**

*Fermion avatars of the Sugawara model*, Phys. Rev.

**180**(1969), 1359-1366.

*A field theory of currents*, Phys. Rev.

**170**(1968), 1659-1662.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
17B67,
15A72,
20G45

Retrieve articles in all journals with MSC: 17B67, 15A72, 20G45

Additional Information

Article copyright:
© Copyright 1989
American Mathematical Society